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Executive Summary

DSTL wish to explore methods for propagating uncertainty through
a succession of linked models. The Study Group have looked at the
particular example of casualty estimation from airbourne dispersion and
suggested two different potential solutions. If the structure of the models
is sufficiently simple, and the number of degrees of freedom relatively
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1 Introduction

Toxic substances released into the environment pose both an immediate and de-
layed risk to human health. When this release is in the form of a gas or vapour
it is necessary to predict where the substance will disperse and deposit in the en-
vironment as this will allow a first responder to undertake appropriate mitigation
strategies. To this end many organisations have worked to produce models which
predict parts of this process. However, in order to produce an estimate of casualties
that may result from exposure to the substance these disparate models must be tied
together. Importantly, it is not only necessary to predict a casualty estimate but
also to have an associated uncertainty with this value. DSTL challenged the Study
Group to improve upon their existing methodology to incorporate uncertainty into
the resulting casualty estimates.

1.1 Background and scope

(1.1.1) In order to produce casualty estimates following the release of toxic sub-
stances into the environment, DSTL have developed a suite of disparate
models that attempt to capture different parts of the system, from release,
via dispersion, through to the expected ’dose’ received by individuals and
an eventual casualty estimate. These models are referred to as the hazard
chain, and are described in more detail below.

(1.1.2) Meteorological models provide forcing to the dispersal of the toxic sub-
stance (e.g. winds). Typically, several different meteorological scenarios
will be investigated.

(1.1.3) An understanding of the release mechanism, including the location and
volume of release, are assumed to be known, and provide an initial condi-
tion to the dispersion model.

(1.1.4) A dispersion model is used to track the motion of the toxic substance in
space and time. The model used will vary depending on the local terrain,
but could be the Second-order Closure Integrated Puff model (SCIPUFF)
for open terrain or the Urban Dispersion Model (UDM) in built-up areas.
It is understood that each of these models accounts for some uncertainty,
both by performing an ensemble average over several (meteorological) con-
ditions and by parametering intrinsic uncertainty that might arise due to
turbulence, for example. The output from the dispersion model is in the
form of the mean and variance in substance concentration at each point
in space and time used in the numerical grid.

(1.1.5) A casualty model that calculates the chemical dosage received by an
individual over time, and estimates the expected casualty rate in the pop-
ulation by way of a probit curve.
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(1.1.6) The principal flaw with the existing approach is that the casualty model
formally requires the actual concentration at each point in time and space,
whereas statistical nature of the dispersion model output means that only
the mean concentration is available for use in the casualty model. This
means that extreme concentrations (which are likely to have a significant
effect on casualty rates) are not accounted for by the casualty model.

(1.1.7) The problem set for the Study Group was to suggest methodologies to
allow uncertainty to be propagated correctly between models, focussing
on incorporating the statistical output of the dispersion model into the
casualty model. In addition, there was to be some discussion regarding
how to handle other types of uncertainty in the system, such as parametric
uncertainty and variability within the population.

2 Uncertainty propagation

This section addresses the main task set for the Study Group: determining how
to calculate the distribution of casualty rates given the distribution of concentra-
tions, as parameterised by its statistical moments. After a brief description of the
dispersion and casualty models, we present two methods for uncertainty propaga-
tion: Monte-Carlo-like sampling and a semi-analytical approach based on Bayes’
Theorem.

2.1 Details of the dispersion model

(2.1.1) The Urban Dispersion Model (UDM) used by DSTL is a Gaussian puff
model that takes as input a set of meteorological conditions and release
parameters. It performs a set of simulations with stochastic processes
representing the uncertainty in the forcing (e.g. winds). More details of
this model can be found in [1], and references therein.

(2.1.2) The output from the UDM is given in the form of the mean and variance
calculated over the ensemble of simulations carried out. Without account-
ing for the distribution associated with this mean and variance, one cannot
capture fluctuations and extremes of concentrations. However, it is pre-
cisely these extreme values that can be most significant when estimating
casualty rates.

(2.1.3) It is considered in the established literature [2] that the clipped normal
distribution is the most appropriate distribution to represent the concen-
trations modelled by the UDM and other Gaussian puff models. The
clipped normal distribution has the same familiar bell shape as the usual
normal distribution, but the probability density of negative concentrations
is set to zero. The probabilistic weight removed from the negative con-
centrations is then applied at zero concentration. The probability density
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function is therefore:

p(c|µ̂, σ̂) = δ(c)P {C = 0|µ̂, σ̂}+
H(c)√
2πσ̂2

exp

(
−(x− µ̂)2

2σ̂2

)
, (1)

where µ̂ and σ̂2 are the mean and variance of the un-clipped distribution
and H(c) is the Heaviside function (zero for negative c, one otherwise).
The finite probability of zero concentration is represented by the delta
function term. The probability of zero concentration is calculated from
the standard normal cumulative distribution function:

P {C = 0|µ̂, σ̂} = Φ(−µ̂/σ̂). (2)

(2.1.4) It is important to note that µ̂ and σ̂2 are not the mean and variance of
the clipped normal distribution. The relevant transformation is:

µ = E(C) =
σ̂√
2π

+ µ̂

[
1− Φ

(
− µ̂

σ̂

)]
, (3)

σ2 = Var(C) = σ̂2

[
1− Φ

(
− µ̂

σ̂

)]
− µ(µ− µ̂). (4)

We will use this transformation later when working with the clipped nor-
mal distribution.

2.2 Details of the casualty model

(2.2.1) The casualty model comprises two stages, described in detail by [5]. First
of all, the inhaled dose, Dinhal (henceforth referred to as the dose, for
simplicity) of the toxic chemical is computed as a function of time using
the integral expression:

Dinhal(t) = RcRBR

∫ t

0

(
BR max(c(t′)− cthr, 0)

RcRBR

)n

dt′, (5)

where

cthr is threshold concentration
Rc is the reference concentration level in kg/m3

BR is the breathing rate in m3/s
RBR is the reference breathing rate in m3/s

and n is the toxic load exponent, which reflects the relative severity of
inhaling larger concentrations for short times when compared to inhaling
smaller concentrations over a longer timeframe. Typically, all of these
quantities save the breathing rate will be assumed constant in time and
across the population. For now, we also assume a constant breathing rate,
and defer a discussion of variable breathing rate to later sections.
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(2.2.2) The concentration used in the dose calculation ought to be the actual
concentration. However, in the absence of any information other than
the statistics of concentration obtained from the dispersion model, the
current procedure used by DSTL is to use the mean concentration when
calculating the dose.

(2.2.3) Having calculated the dose, the next step is to calculate the effect on the
population. To capture the variation of resitance to the chemical, DSTL
use a probit curve, which gives the probability of a particular response
given the dose. The form of probit curve used is:

B(D|D50, β) =
1

2

{
1 + erf

[
β√
2

log10

(
D

D50

)]}
, (6)

where D50 is the dose for which one expects 50% of the population to suffer
a response. Different values of D50 apply to different responses, increasing
in severity from eye irritation, through incapacitation, to death. The
probit slope, β, which is estimated from toxicology studies, will also vary
depending on effect.

(2.2.4) To compute a casualty estimate, DSTL currently use a so-called ‘Lucky
Number’ approach, by which it is understood that a number of values equal
to the local population size are sampled uniformly on the interval [0,1].
If a number lies below the probit value for the observed concentration, a
casualty is recorded. It was pointed out by the Study Group that simply
multiplying the probit by the population ought to give the same response
statistically.

(2.2.5) During the Study Group, the principal focus was on incorporating the un-
certainty associated with the concentrations in the dose calculation, with
the understanding that proceeding to a casualty estimate via the probit
curve is a trivial extension. Furthermore, we begin by considering the
concentration at only a single point in space. The consequences of spatial
variation and correlation in concentration will be discussed in Section 4.
In what follows, we shall therefore determine a means of estimating the
distribution of doses at a single point in space given time series data of
the mean and variance of concentration at that point.

2.3 Approach 1: Sampling

(2.3.1) The first method of estimating the dose distribution suggested by the
Study Group was a straightforward sampling approach. Given the distri-
bution of concentrations at each point in time, it is possible to randomly
generate a time series of concentrations using the clipped normal distri-
bution described in Section 2.1. Such a time series can be inserted into
the dose calcuation (5) and the resulting dose computed. This process can
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repeated a large number of times and the statistics of the calculated doses
can be studied to estimate the distribution of doses. There are many dif-
ferent sampling approaches designed to propagate distributions through
models. In this report, we consider a simple version. A much wider and
more sophisticated set of tools can be found in the work of the Modelling
Uncertainty in Complex Models (MUCM) research group [4].

(2.3.2) An important observation is that successive concentrations in the time
series will be correlated with one another, provided that the timesteps
reflected in the output from the dispersion model are sufficiently short.
The Study Group chose to model the correlation function as a smoothly
decaying Gaussian:

Corr(Ci, Cj) = exp

(
−(ti − tj)

2

t2D

)
, (7)

where tD is a timescale chosen to reflect the typical time over which con-
centrations are correlated. This could be chosen based on experience of
the dispersion model, or directly calculated and output by the UDM along
with the mean and variance of the concentration. Typical correlation times
calculated by the dispersion model are of the order of 5 minutes.

(2.3.3) When sampling concentrations, it is necessary to enforce the correlation
between concentrations. For most distributions, including the clipped
Gaussian, this is very difficult to achieve while preserving the marginal
distribution of each concentration. As the number of degrees of freedom
(that is, the number of timesteps) increases, the difficulty and cost of this
sampling will increase significantly. Worse still, one ought to also include
spatial correlations as well as temporal correlations. Given that a typi-
cal simulation may use 10,000 grid points and 500 timesteps, one would
need to sample approximately 5M correlated random variables for each
dose calculation. Building a good distribution could easily require tens
of thousands of individual dose calculations, making this procedure quite
computationally intensive. However, it is possible to exploit the reason-
ably strong correlations expected to vastly reduce the number of degrees
of freedom at the cost of a small loss of fidelity in representing the speci-
fied correlation. Given that the exact form of the correlation is uncertain,
this does not constitute a large drawback. One such method of reducing
the dimensionality of the problem is the Karhunen-Loève expansion.

(2.3.4) The Karhunen-Loève (K-L) expansion [6] is a means of representing an
infinite dimensional stochastic process as the linear combination of an
infinite number of orthogonal basis functions, where the linear factors are
uncorrelated random variables. The K-L expansion has the property that
the variance is maximised for the first random variable and the variance
monotonically decreases for the subsequent random variables. This means
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Figure 1: Plots of 10,000 dosages simulated from example mean concentration data
with (red) no concentration temporal correlation and (blue) a concentration tem-
poral correlation timescale of 100.

that the K-L expansion is, in some senses, optimal if a finite truncation
of the expansion is desired. For a particular stochastic process X(t), the
definition of the K-L expansion is

X(t) =
∞∑
i=0

Zkek(t) (8)

where Zk are uncorrelated random variables and ek are the eigenfunctions
of the covariance function of X(t). The K-L expansion is the continuous-
time analogue of proper orthogonal decomposition (POD).

(2.3.5) There are arbitrarily many ways to transform correlated random vari-
ables into uncorrelated random variables for sampling purposes. Another
method, which does not permit a reduction in the dimensionality of the
problem, is to use the Cholesky decomposition of the covariance matrix.

(2.3.6) Cholesky decomposition was used to simulate 10,000 dosage values for a
single spatial location using example mean concentration data provided
by DSTL. Two types of data were simulated to realise the importance of
modelling temporal correlations in concentration (see Fig. 1):
1) temporally independent data, and
2) data with a temporal correlation timescale of 100 (a value that was
arbitrarily chosen for demonstration purposes only).

Fig. 1 shows that the dosage distribution is different when temporal corre-
lations in concentration are modelled. From this it can be concluded that
it is important to model concentration temporal concentrations, despite
the increased computational cost.

It was also noticed and verified that the simulated dosages are well ap-
proximated by the gamma distribution (see Fig. 2).
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Figure 2: QQplot comparing simulated dosages (with a concentration temporal
correlation timescale of 100) to gamma-distributed data. Notice the goodness of fit
to y=x, indicating that the simulated dosages are well approximated by the gamma
distribution.

(2.3.7) Before leaving this discussion of sampling, it bears repeating that every-
thing discussed above can apply equally to casualty estimates as it does
to dose - it is simply a matter of proceeding to calculate the casualty es-
timate from the dose via the probit function, and building a distribution
of casualty estimates from the resulting data.

2.4 Approach 2: Semi-analytical

(2.4.1) The sampling method described above can be used for any model. All
that is needed is knowledge of the distribution of the input variable(s)
(concentration in this example). The casualty model itself may be treated
as a black box whose output may be used to build a distribution of dose
or casualty rate. In this section, we discuss a more direct method that
exploits our knowledge of the structure of the casualty model. The idea
is to employ Bayes’ Theorem to integrate across the concentration dis-
tribution, thereby accounting for the variability in concentration when
computing casualty estimates.

(2.4.2) Suppose that C = (C1, C2, ..., CN) are random variables representing the
concentration at each point in space and in the dispersion model. We know
that concentration Ci has mean µi and variance σ2

i , and that concentra-
tions follow the clipped Gaussian distribution with probability density
function pC(c|µ, σ) given by (1), with µ̂ and σ̂ found by inverting the re-
lationship given by (3-4). Bayes’ theorem then tells us that the dose, D,
has probability density function:

fD(d) = pD(d|µ, σ) =

∫
p(d|c) pC(c|µ, σ) dc, (9)

where µ = (µ1, µ2, ..., µN) and σ = (σ1, σ2, ..., σN).
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(2.4.3) The conditional probability density of the dose given the concentration
history, p(d|c), is a known function described by the casualty model. In
the simplest case, described in Section 2.2, the dose is a deterministic
function of concentration given by the integral expression (5), thus:

p(d|c) = δ(d−Dinhal(c)). (10)

The presence of this delta-function in (9) has the effect of restricting
the volume of integration to include only those values of c such that
Dinhal(c) = d, hence:

fD(d) =

∫
c:D(c)=d

pC(c|µ, σ) dc. (11)

This new integration domain will typically occupy N − 1 dimensions, and
may have a complicated shape depending on the value of the toxic load
exponent chosen and on any time-dependence in the breathing rate.

(2.4.4) A slightly simpler approach would be to compute the cumulative distribu-
tion function, rather than the probability density function:

FD(d) = P {D < d} =

∫
H(d−D(c))pC(c|µ, σ) dc. (12)

Here we use the Heaviside function:

H(x) =

{
1 if x ≥ 0,

0 if x ≤ 0,
(13)

to ensure that only concentration histories that give rise to doses less than
or equal to d are included. As with (11), one could modify the region of
integration to remove this function:

FD(d) =

∫
c:D(c)≤d

pC(c|µ, σ) dc. (14)

(2.4.5) It is worth reminding ourselves at this point that concentrations are cor-
related in space and time and therefore the form of pC(c) is necessarily
complicated by the need to account for these correlations. As with sam-
pling, it is possible to handle correlations by using the K-L expansion
(see eq. 8). By carefully choosing a set of independent random variables,
Z = (Z1, Z2, ..., Zk), we represent each concentration as a linear combina-
tion of these variables, C(Z). This not only reduces the dimensionality of
the problem, but also results in a simpler probability density function:

pC(c|µ, σ) =

∫
x:C(x)=c

pZ(z|µ, σ) dz =

∫
z:C(z)=c

k∏
i=1

pZi(zi) dz. (15)
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Alternatively, one could bypass the concentration altogether, write the
dose as a function of K-L variables:

Dinhal = D(C) = D(C(Z)), (16)

and rewrite the cumulative distribution function (14) in the form:

FD(d) =

∫
z:D(C(z))≤d

pZ(z|µ, σ) dz, (17)

with

pZ(z|µ, σ) =
k∏

i=1

pZi(zi). (18)

By exploiting the finding from Section 2.3 that the dosages were well ap-
proximated by gamma distributions, it would be possible to dramatically
reduce the dimensionality of this problem even further with minimal loss
of information. This is because dosage can then be described by only the
first two moments of a gamma distribution.

(2.4.6) The K-L expansion offers a marked reduction in the difficulty of evaluating
the joint probability density function for concentration, and thus expedites
the computation of the probability density function for dose. However,
the integration domain (i.e. those values of z such that D((C(z)) ≤ d)
could take on a complicated shape depending on the model parameters
(particularly the toxic load exponent). For this reason, it is most likely
that this integral will need to be evaluated numerically.

(2.4.7) Many multi-dimensional numerical quadrature techniques for approximat-
ing integrals are based on one-dimensional quadrature rules such as Curtis-
Clenshaw or Gaussian quadrature which use a non-equispaced grid over
the domain (see [7] for a review, and [8] for code). Typically, grid points
are clustered at the boundaries of the domain. To apply a one-dimensional
quadrature rule, the grid over which the integrand is evaluated is defined
by a tensor product of the corresponding one-dimensional grid. The use
of a tensor product means that the number of grid points required grows
with the factorial of the number of dimensions, thus leading to severe limi-
tations in its applicability (on modern computer hardware, six dimensions
is often cited as an upper limit). An alternative is to use a Smolyak-type
sparse grid which reduces the number of grid points needed dramatically,
allowing quadrature techniques to be used in up to 10–20 dimensions on
modern computer hardware.

(2.4.8) To approximate a very high dimensional integral, Monte-Carlo methods
may be required.
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3 Other sources of uncertainty

In addition to the main discussion regarding uncertainty propagation, the Study
Group also considered how to incorporate other sources of uncertainty into the ca-
sualty model. In this more speculative analysis, distinction was drawn between
two different types of uncertainty: parametric uncertainty, which arises from un-
known, but constant parameter values; and natural variation across the population.
This section describes both sources of uncertainty, and proposes a methodology for
bringing them into the casualty model.

3.1 Variability in the population

(3.1.1) Several sources of uncertainty in the model may be traced back to variation
between individuals in the population. An attempt is already made to
model the variation in susceptibility by way of the probit curve used to
estimate casualty rates from chemical doses. Another example is breathing
rate, which varies from one person to the next, but is expected to follow
some distribution that can be predicted based on both natural variation
and difference due to different activity levels between individuals.

(3.1.2) The uncertainty in breathing rate can be captured in much the same way
as concentration, using either the sampling or semi-analytical approaches
described in Section 2. Consider as an example the semi-analytical ap-
proach of Section 2.4.

(3.1.3) The conditional cumulative distribution function of dose given the breath-
ing rate is:

FD|BR(d,BR) = P {D ≤ d|µ, σ,BR} =

∫
c:D(c,BR)≤d

pC(c|µ, σ) dc. (19)

Note that the dependency on breathing rate has been made explicit in
D(c, BR). The function form is exactly the same as in (5). Applying
Bayes’ theorem, one can write:

FD(d) = P {D ≤ d|µ, σ} =

∫
FD|BR(d, b)pBR(b) db, (20)

where pBR(b) is the probability density function for the breathing rate.
This is exactly the same treatment given to the concentration variables,
although it is vastly simplified by the fact that there is only one breathing
rate per individual, as opposed to a whole time series of concentrations.

(3.1.4) Other variations (e.g. in threshold concentration or metabolism time)
may be included in the same manner, with each variable requiring an
extra integral to account for its variation.
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3.2 Parametric uncertainty

(3.2.1) Parametric uncertainty arises from choosing model parameters with a fixed
value without being certain about that value. For example, a toxicologist
might suggest a toxic load exponent, n = 1.3± 0.05, for a given chemical.
The true value will be fixed for that chemical, but the experimental error
must be accounted for. In the probit model used currently, the parameters
D50 and β have the same properties.

(3.2.2) There are two main approaches to incorporating this parametric uncer-
tainty into the model, stemming from Bayesian and frequentist statistics
respectively.

(3.2.3) The Bayesian approach involves assuming a probability distribution for
the unknown parameter value. The associated probability density function
can then be used to extend the Bayesian integral in exactly the same way
as for natural variability (see Section 3.1).

(3.2.4) A frequentist would argue that it is not appropriate to specify a distribu-
tion for an unknown parameter. Indeed, there is only one true value of the
parameter, so any distribution could only express our relative confidence
in different values. If our confidence is misplaced for whatever reason,
there is a risk that the conclusions will be spurious. The frequentist ap-
proach avoids the choice and fitting of a distribution altogether, favouring
instead a sensitivity analysis of the parameter. In its crudest form, the
‘distribution-free’ sensitivity analysis could simply involve computing the
distribution of casualty estimates for a range of plausible parameters, and
analysing the resulting data to look for a best- and worst- case scenario.

(3.2.5) A more sophisticated sensitivity analysis might use some form of optimi-
sation algorithm to seek the worst case within the plausible parameter
range. The reader is directed to [3] for a discussion of optimisation strate-
gies aimed at maximising a function (in this case some statistic of the
casualty rate distribution) efficiently (i.e. testing as few parameter values
as possible).

4 Further extensions

A handful of other topics were discussed at the Study Group, but the time con-
straints prevented them from being pursued in detail. These topics are listed in this
section.

The probit curve approach (in particular, the ‘Lucky Number’ method) used in
the existing casualty estimate sits slightly at odds with the treatment of uncertainty
proposed by the Study Group. It was suggested that a more appropriate means of
capturing the variation in susceptibility among the population would be to have
a response curve for each individual, describing the probability of each effect (i.e.
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incapacitation, death, etc.) at a given dose for that individual. The response curve
would have the same ‘sigmoid’ shape as the probit curves, and could even be pa-
rameterised by β and D50. Here, however, D50 should be interpreted as the dose at
which the probability of suffering the effect is precisely 50%. Where this approach
differs from the probit curve approach is that the parameters D50 and β may vary
from individual to individual, accounting for natural variation in their general state
of health, or indeed protective equipment they might have. In exactly the same
manner as breathing rate is treated in Section 3.1, distributions of D50 and β could
be constructed and integrated over in order to reflect the variation in susceptibility
in the casualty estimate. This obviates the need for any further sampling (such as
the ‘Lucky Number’ method).

The previous sections all deal with breathing rates that are constant in time for
each individual. This is a highly unrealistic assumption, as individuals’ breathing
rates may change as a result of a change in activity level (e.g. going from sleeping to
walking to running), or as a result of increased stress as the effects of the chemical
attack become apparent. An interesting extension to the existing model would
consider time-dependent breathing rates, perhaps by modelling the statistics of
transition from low-activity (low-BR) to high-activity (high-BR) states. A first
model could consider only a daily routine, while a more sophisticated model could
include feedback from the estimated casualty rate in order to account for the growing
stress of personnel during an attack.

5 Conclusions

The original problem set by DSTL was for the Study Group to propose a method-
ology for propagating uncertainty from the output of a dispersion model, through
a casualty model, resulting in a probability distribution for casualty estimates.

The Study Group have suggested two approaches to uncertainty propagation,
one based on large-scale sampling from the distribution of concentrations, and an-
other based on the integral form of Bayes’ theorem. Both of these methods ought
to work for the models in question, and some sample code has been written to
illustrate the sampling approach.

Other discussions at the Study Group concerned the introduction of other sources
of uncertainty, and the important distinction between parametric uncertainty and
natural variation. Furthermore, it was suggested that the current calculation in-
volving involving a probit curve may not be the most appropriate means of assessing
the response of the population to the chemical dose. Finally, some speculation was
made regarding the modelling of time-dependent breathing rates.

A Online resources

As part of the online support of the Study Group, a range of additional materi-
als have been made available on the Study Group section of the connect platform at
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https://connect.innovateuk.org/web/partnership-programmes/articles/-/blogs/propagation-
of-uncertainty-through-a-hazard-chain.
Available resources include:

• Problem brief

• Problem presentation (slides and video, without sound by request)

• Final presentation (slides and video)
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